LIVE PODCAST

T Cell Directed Therapy in Prostate Cancer

Brian Rini, MD Vanderbilt-Ingram Cancer Center

Michael Morris, MD Memorial Sloan Kettering Cancer Center

Tanya Dorff, MD City of Hope

Karen Autio, MD Memorial Sloan Kettering Cancer Center

T Cell Therapy in Prostate Cancer

Table 1. TAAs and their expression in type of prostate cancer versus their normal distribution.

Tumor-associated	Call /bissue distribution
antigen	
PSCA	Prostate adenocarcinoma, urothelial, skin,
	esophagus, neuronal, stomach
PSMA	Prostate adenocarcinoma, prostate acinar
	epithelium, proximal tubular cells, glial cells,
	jejunal brush border cells, salivary glandular cells
STEAP-1	Prostate adenocarcinoma, bladder, ovary, bone
	marrow, cardiac, respiratory
DLL3	Neuroendocrine prostate cancer (NEPC), neurons,
	pancreatic islet cells, pituitary
CEA	NEPC , urogenital, respiratory, gastrointestinal

Dorff T et al. CCR, 2022

CEA, Carcinoembryonic Antigen; DLL3, Delta-like Ligand 3; PSCA, Prostate Stem Cell Antigen; PSMA, Prostate-specific Membrane Antigen; STEAP-1, Six-transmembrane Epithelial Antigen of the Prostate 1

TCEs bypass steps needed for MHC-TCR-dependent T-cell activation and engage CD3 on T-cells <u>and</u> a tumor-associated antigen, leading to T-cell mediated killing

Slide adapted from Neeraj Agarwal ESMO 2024

Cytokine Release Syndrome (CRS)

Grade 1	Grade 2	Grade 3	Grade 4
Fever, nausea, fatigue etc, requiring symptomatic treatment only	 GR1 CRS sxs and IVF or low-dose vasopressor for hypotension, or O2 requirement < 40%, or Grade 3 transaminitis 	 GR1 CRS sxs and High dose or multiple vasopressor for hypotension, or O2 requirement >= 40%, or Grade 4 transaminitis 	 GR1 CRS sxs and Requirement for ventilator, or Grade 4 organ toxicity (excluding transaminitis)
Outpatient	Generally inpatient +/- ICU	ICU	ICU

Shimabukuro et al. JITC. 2018; Lee DW et al. Biol Blood Marrow Transplant. 2019

Acapatamab (AMG160) PSMA x CD3 Bispecific

- Ph1 trial mCRPC post ARPI + taxane, n=133
- Dose exploration (0.003-0.9mg) + expansion (0.3mg)
- Safety: CRS 97-98%; GR3 in 23% (exploration) and 16% (expansion)
- Efficacy in Expansion:
 - Confirmed PSA50 in 30.4% of patients
 - RECIST ORR 7.4%
 - rPFS 3.7mo (95%Cl, 2.0-5.4)
- This agent is not being developed given the toxicity (CRS) and lack of durability

Dorff T et al. CCR. 2024

What does this tell us about T Cell Engagers?

- 1. These agents CAN engage an immune response that correlates with EFFICACY
- 2. PSA declines happen EARLY
- 3. Challenge: for those who have initial PSA declines, DURABILITY is a problem, but we need to understand WHY is it at the tumor level (expression), immune level? Is it a feature inherent to the drug itself/PK?

PSMA PET as a Biomarker for PSMA TCE

Whole body

Higher PSMA SUVmax associated with longer rPFS and

PSA 50 with Acapatamab

	Low PSMA expression (n=23)	High PSMA expression (n=22)
Median rPFS mo	1.97 (1.84, 3.78)	5.39 (1.97, 8.31)
Median fu mo *Patients were class or low (SUV _{max} < 5 ⁶⁸ Ga-PSMA-11 bas	5.55 (5.55, NE) ssified as having hig 5.06) tumor PSMA e sed PET/CT imaging	3.25 (1.84, 8.31) Jh (SUV _{max} > 5.06) xpression by J. Dorff T et al. <i>CCR</i> . 2024

Quantitative ⁶⁸Ga-PSMA-11 PET and Clinical Outcomes in Metastatic Castration-resistant Prostate Cancer Following ¹⁷⁷Lu-PSMA-617 (VISION Trial)

(all lesions, red) (liver, green; bone, blue; LN, r

Kuo PH and Morris MJ et al. Published: August 20, 2024 https://doi.org/10.1148/radiol.233460

Segmented anatomical regions (liver, green; bone, blue; LN, red)

- Exploratory secondary analysis of the VISION trial including 826 randomized participants.
- Baseline ⁶⁸Ga PSMA-11 PET SUV_{mean} was strongly associated with improved outcomes following ¹⁷⁷Lu-PSMA-617 therapy vs controls (HR, 0.86–1.43).
- A 1-unit whole-body tumor SUV_{mean} increase was associated with a 12% or 10% decreased risk of radiographic progression or death, respectively.
- Higher PSMA-positive tumor volume was associated with worse overall survival (HR, 1.36–2.12).

Radiology

Acapatamab-induced PSA response in patients who received prior lutetium-PSMA therapy

Xaluritamig (AMG509) STEAP1 x CD3 Bispecific

NEILY VVN EL al. CULICEI DISCUVELY. ZUZ4, EJIVIU ZUZ4

8

NCT#	Drug	Target/N	Rates of CRS	Discontinue/ Interrupt for Toxicity	Publication
NCT03792841 NCT04631601	Acapatamab (AMG 160)	PSMA N=133	<i>Exploration:</i> ANY: 97.4% GR3: 23.4% <i>Expansion:</i> ANY: 98.2% GR3: 16.1%	CRS Leading to discontinuation: 0% CRS Leading to Interruption: 11.3%	Dorff, CCR, 2024
NCT05369000	LAVA-1207	PSMA x gamma-delta T cell N=20	ANY: 20% GR1:10% GR2: 10%	Not reported	Mehra, GU ASCO 2023
NCT05369000	JNJ-63898081	PSMA N=39	ANY: 66.7% GR1: 33.4% GR2: 33.3%	Discontinuation: 5.1%	Lim, Clin GU Cancers, 2023
NCT04702737	Tarlatamab (AMG 757)	DLL3 N=40	ANY: 75% GR1: 55% GR2: 17.5% GR3: 2.5%	TRAE leading to discontinuation 7.5% TRAE leading to interruption: 20%	Aggarwal, ASCO 2024
NCT04221542	Xaluritamig (AMG 509)	STEAP1 N=97	ANY: 72% GR1: 26% GR2: 33% GR3: 2%	TRAE leading to discontinuation: 19% TRAE leading to interruption: 47%	Kelly, Cancer Discovery, 2024

Tarlatamab in De novo or Treatment Emergent NEPC

- Broad eligibility for inclusion of NEPC in ph1b; N=40
- Tarlatamab 100mg IV Q2wk
- Expected toxicity profile (CRS)
- Overall ORR: 10.5% (95% CI, 2.9 -24.8mos)
- DLL3 + by IHC ORR: 22.2% (6.4 47.6mos)

Histological features"	Patients N = 37** (%)	DLL3+ x/X** (%)
Evaluated tumor samples for DLL3	32 (86)	18/32 (56)
Small cell (pure or mixed)	17 (46)	11/15 (73)
Adenocarcinoma with NE features [†]	15 (40)	7/14 (50)
Adenocarcinoma with genomic markers ††	5 (14)	0/3 (0)

Aggarwal R et al, ASCO 2024

Audience Question

One or more T cell engager therapies will be FDA-approved in prostate cancer in the next 3-5 years

True
 False

Benefits and Challenges for T Cell Engagers

<u>Advantages</u>

- Bypass TCR-MHC
- Off the shelf (scalability)
- High T:E ratio/Belief that less PSMA expression may be needed (compared to RLT?)
- Opportunity to target different TAA
- CRS is largely reversible and transient, as compared to cumulative toxicity with chemotherapy

Disadvantages

- Reliant on endogenous T cell effector function
- Requires frequent and ongoing dosing
- Development of ADAs
- Patient population (elderly, CAD)/toxicity
- Inpatient administration due to CRS/availability in community practice