Smoldering Myeloma

PRESENTER

Binod Dhakal, MD, MSMedical College of Wisconsin

PANELISTS

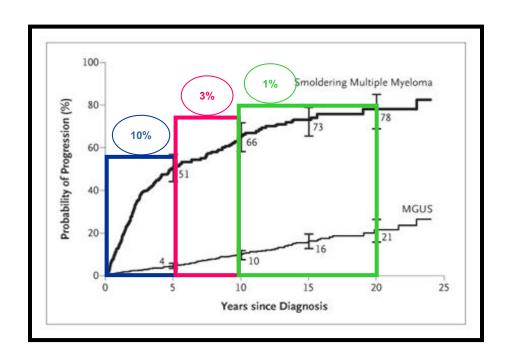
Peter Voorhees, MD Atrium Health

Sham Mailankody, MD
Memorial Sloan Kettering
Cancer Center

Caitlin Costello, MD UC San Diego Health

Smoldering Multiple Myeloma: To Treat or Not To Treat?

Presenter

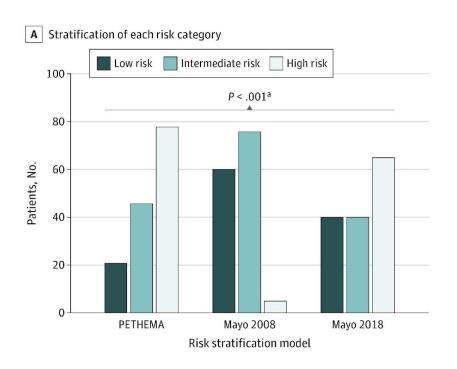

Binod Dhakai, MD, MS Associate Professor of Medicine Medical College of Wisconsin

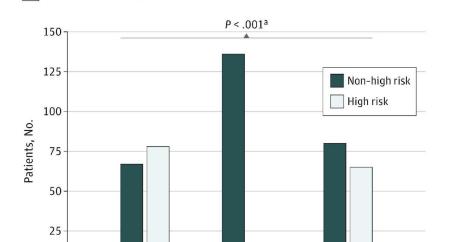
Disclosures

- Research funding: BMS, Janssen, Arcellx, Carsgen, Sanofi, Caribou and Gracell
- Advisory Board: BMS, Janssen, Arcellx, Sanofi, GSK
- Honorarium: Karyopharm, BMS, Janssen

A heterogenous entity!

Diagnosis	Disease definition
Non-IgM MGUS	Both criteria must be met
	Serum M protein (IgG or IgA) <3 g/dL and clonal BMPCs <10%, and
	Absence of myeloma defining events (MDEs) or amyloidosis
Smoldering Multiple Myeloma	Both criteria must be met:
	Serum M protein (IgG or IgA) ≥3 g/dL or urinary M protein ≥500 mg/24 h and/or clonal BMPCs 10%-60%, and
	Absence of MDEs or amyloidosis


Models of progression of SMM to MM


PETHEMA	≥95% aberrant PCs Immunoparesis
Mayo 2008	BPMCs ≥10% M spike ≥3 g/dL sFLC ratio ≤0.125 or ≥8
Mayo 2018	BPMC >20% M spike >2 g/dL sFLC ratio < .05 or > 20
IMWG 2020	sFLC ratio M spike BMPCs FISH abnormalities*

^{*} t (4;14), t (14;16),1q gain, del13q/monosomy 13

High rates of discordance among the models

Mayo 2008

Risk stratification model

Stratification of high risk vs non-high risk

PETHEMA

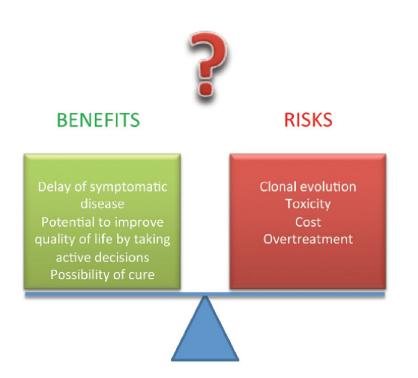
Mayo 2018

Therapeutic approaches in SMM: Opportunities and Challenges

 Current guidelines recommend monitoring patients with SMM every 3 to 6 months for active MM before initiating treatment.¹

 Most patients with high- or intermediate-risk SMM do progress to MM.^{2,3}

Intercepting high-/intermediate-risk SMM may yield clinical benefit.



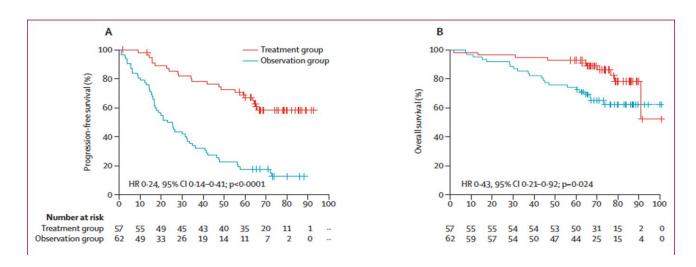
^{1.} National Comprehensive Cancer Network. https://www.nccn.org/patients/guidelines/myeloma/files/assets/common/downloads/files/myeloma.pdf. Accessed October 20, 2017.

^{2.} Dispenzieri A et al. Blood. 2008;111(2):785-789

^{3.} Pérez-Persona E et al. Blood. 2007;110(7):2586-2592.

To treat or not to treat?

Criteria to identify SMM for high risk of progression: Validation and refinement


True prevalence of SMM: 0.53%

Divergent treatment philosophies:

- CURE (intensive approach)
- CONTROL (less intensive approach)

QuiRedex Phase 3 trial: First Randomized Trial Showing Benefit in SMM

119 patients with high-risk SMM (by PETHEMA) randomized to:

- Lenalidomide plus dexamethasone for nine cycles followed by Len maintenance for 2 years
- Observation only

Phase 3 AQUILA Study of Dara vs Active Monitoring in High-Risk Smoldering MM: Study Design and Patients

Key Eligibility Criteria

- Confirmed SMM diagnosis (per IMWG) for ≤5 years
- ECOG PS 0-1
- Clonal BMPCs ≥10% and ≥1 of the following risk factors: Serum M-protein ≥30 g/dL; IgA SMM; Immunoparesis with ↓ of 2 uninvolved Ig isotypes; Serum involved:uninvolved FLC ratio ≥8 and <100; Clonal BPMCs >50% to <60%</p>

1:1 Randomization (N=390)

Dara Dara: 1800 mg SUBQ Cycles 1-2: QW; Cycles 3-6: Q2W; Q4W thereafter in 28-day cycles until 39 cycles, 36 months, or PD

Active Monitoring (AM)
Continued for 36 months or until PD

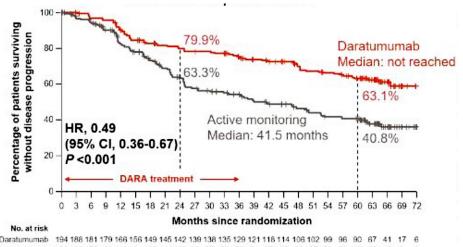
- Efficacy follow-up until PD by SLiM-CRAB criteria¹
- Survival follow-up q6 months until end of study

Primary end point: PFS (by IRC per IMWG SLiM-CRAB criteria)

Key secondary end points: ORR, time to 1L treatment for MM, PES on 1L treatment for MM, OS

Median age (range	e), years	63.0 (31-86)	64.5 (36-83)
18 to <65 year	s, n (%)	106 (54.6)	98 (50.0)
65 to <75 year	s, n (%)	67 (34.5)	74 (37.8)
≥75 years, n (%	%)	21 (10.8)	24 (12.2)
FCC DC = (0/)	0	165 (85.1)	160 (81.6)
ECG PS, n (%)	1	29 (14.9)	36 (18.4)
Median years from of SMM to random (range)		0.80 (0-4.7)	0.67 (0-5.0)
Median BPMCs (ra	ange), %	20.0 (8.0-59.5)	20.0 (10.0-55.0)
Turns of CMM is	lgG	127 (65.5)	138 (70.4)
Type of SMM, n (%)	lgΑ	55 (28.4)	42 (21.4)
(70)	Other	12 (6.2)	16 (8.2)
AQUILA risk	<3	154 (79.4)	156 (79.6)
factors, n (%)	≥3	40 (20.6)	40 (20.4)
Cytogenetic risk pr	ofile ^a , n/N	29/167 (17.4)	22/170 (12.9)
Maria 2040 rist. Lo	w	45 (23.2)	34 (17.3)
Mayo 2018 risk In criteria, n (%)	termediate	77 (39.7)	76 (38.8)
Hi	gh	72 (37.1)	86 (43.9)

^a ≥1 of del(17p), t(4;14), and/or t(14;16).

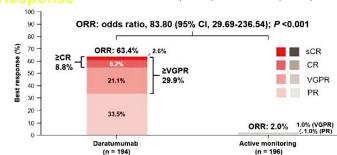


^{1.} Rajkumar SV et al. Lancet Oncol. 2014;15(12):e538-e548.

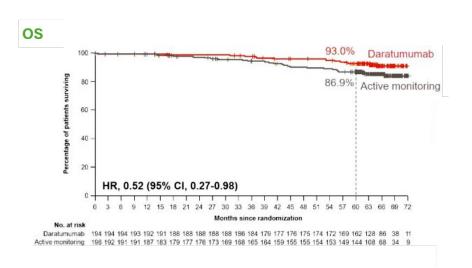
Phase 3 AQUILA Study of Dara vs Active Monitoring in High-Risk Smoldering MM: PFS and ORR

MRI

Progression to MM by IMWG SLiM-CRAB Criteria (by IRC)

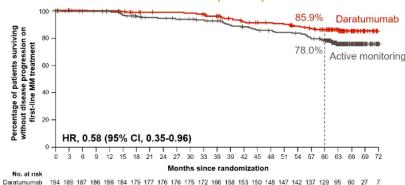


Daratumumab 194 186 181 179 166 156 149 145 142 139 138 135 129 121 118 114 106 102 99 96 90 67 41 17 6 Active monitoring 196 180 175 160 142 131 120 111 100 91 87 83 78 71 67 65 60 55 51 50 49 33 19 8 2


Retrospective Review of PFS in Patients With High-Risk by Mayo 2018 Criteria

 Median PFS: NR with Dara vs 22.1 months with AM (HR 0.36 [95% CI, 0.23-0.58])

PFS event	67 (34.5)	99 (50.5)
Death without PD	5 (2.6)	5 (2.6)
PD	62 (32.0)	94 (48.0)
CRAB criteria	12 (6.2)	34 (17.3)
Calcium Elevation	0	2 (1.0)
Renal		
insufficiency	0	0
Anemia	2 (1.0)	14 (7.1)
Bone disease	10 (5.2)	18 (9.2)
SLiM criteria	50 (25.8)	65 (33.2)
Clonal BPMCs	5 (2.6)	16 (8.2)
Best Resperum FLC	33 (17.0)	33 (16.8)



Phase 3 AQUILA Study of Dara vs Active Monitoring in High-Risk Smoldering MM: OS and PFS2

os		Dara (n=194)	AM (n=196)
Deaths, n	(%)	15 (7.7)	26 (13.3)
D.:	PD	3	9
Primary cause, n	AE	2	4
oaaso, n	Othera	10	13

PFS on 1L Treatment for MM (PFS2)

- VRd was the most common 1L therapy
 - 29.7% (19/64) in the Dara arm
 - 27.6% (29/105) in the AM arm
- Received anti-CD38 mAb-based therapy
 - 25.0% (16/64) in the Dara arm
 - 33.3% (33/105) in the AM arm

Summary of Phase 2 and 3 Studies in SMM

	Patient population	ORR	Additional Notes
Phase 3 Studies			
Len/dex (Mateos)	Int/high-risk SMM	79%	TTP Rd 9.5 vs Observations 2.1 years
Lenalidomide (Lonial)	Low/int/high-risk SMM	48.9%	3-year PFS of 91% for the lenalidomide arm vs 66% for the observation arm
Daratumumab vs observation (Dimopoulos)	High-risk SMM	63.4%	60-month PFS: 63.1% vs 40.8% 60-month OS: 93% vs 86.9% CR rate 8.8%
Phase 2 Studies (Curative Intent)			
KRD + ASCT (GEM-CESAR)	High-risk SMM	94%	MRD-ve (10 ⁻⁵): 62% after consolidation, 31% after 4 years TTBP: 70 months
Dara-RVD (B-PRISM)	High-risk SMM	98%	MRD-ve (10 ⁻⁵): 65% after 24 months
KRd-D (ASCENT)	High-risk SMM	97%	MRD-ve (10^{-5}): 84%; median time to MRD: 6.6 mo

Immunotherapy in SMM: Rationale

- The immune system is less dysfunctional in SMM and therefore a great opportunity to study **benefit** compared to patients with RRMM
- The tumor burden is lower; therefore, potential for less CRS and toxicities
- Avoid combination therapy and SCT and reserve for use at the time of progression
- Avoid resistance by short, fixed duration of therapy and modify schedule to limit further toxicity
- Compare to previous standard of care such as lenalidomide and dexamethasone to prove superiority

Immunotherapy Trials in HR-SMM

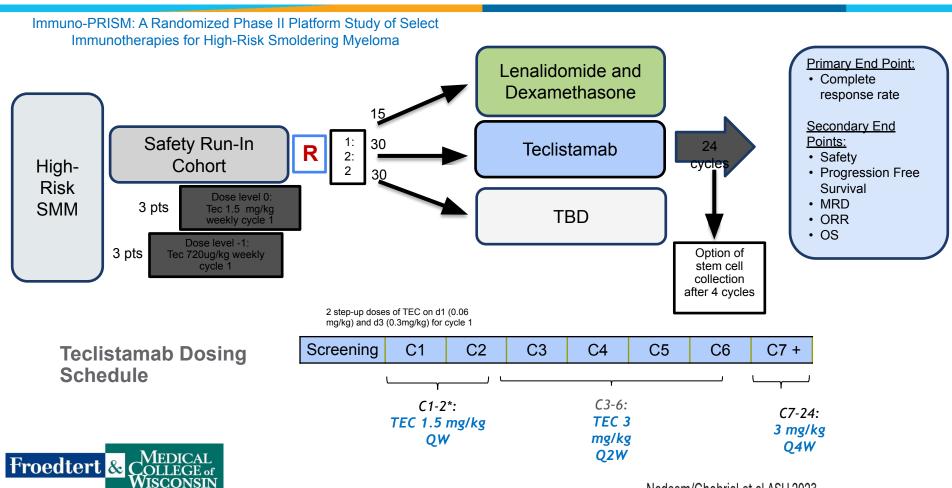
ImmunoPRISM: Teclistamab vs lenalidomide/dex in HR-SMM (NCT05469893)

Elrantamab in HR-SMM (NCT06183489)

Linvoseltamab in HR-SMM (NCT05955508)

Linvoseltamab in HR-MGUS and LR-SMM (NCT06140524)

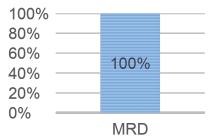
Teclistamab and talquetamab with daratumumab in


HR-SMM (NCT06100237)

CAR-PRISM: Ciltacabtagene autoleucel in HR-SMM

(NCT05767359)

TCE in Smoldering Myeloma


TCE in Smoldering Myeloma

TEC-Treated Cohort (12 patients)

Best response	n	%
CR	10	83
VGPR	2	17
Overall response rate	12	100

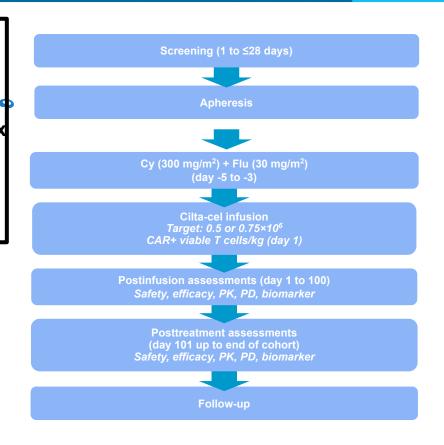
• No patients have progressed on treatment.

Infections (Grade 2 or Greater)	N=12	
	Grade 2	Grade 3
Salmonella	0	1
Sinusitis	2	1
Upper respiratory infections		0
COVID-19	1	0
Adenovirus	1	0
Nonspecific	1	0

- CRS occurred in 7 of 12 (58%) patients treated with teclistamab.
- Two patients developed grade 2 CRS requiring tocilizumab.
- No patients with grade 3 or greater CRS.

CAR-T in Smoldering Myeloma

CAR-PRISM: Cilta-cel in High-Risk Smoldering Myeloma


- The first 3 patients treated at a lower target dose of 0.5 x 10^6 CAR + viable T cells/kg with FDA review of safety prior to dose escalation
- The next 3 patients treated at target dose of 0.75 x 10^6 CAR + viable T cells/kg
- Staggered enrollment with one patient dosed every 60 days

Primary end point

Safety

Secondary end points

- Efficacy: ORR, CR, MRD negativity, PFS
- Incidence and severity of AEs

CAR-T in Smoldering Myeloma

CAR-PRISM: Cilta-cel in High-Risk Smoldering Myeloma

Safety: No DLTs were observed in the safety run-in cohort

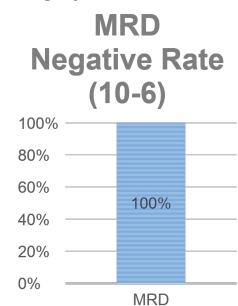
Cytokine Release Syndrome	N=6
Grade 1	4
Grade 2	2

- No grade 3 or greater CRS
- 4 patients received tocilizumab and 2 patients received dexamethasone

DLT Definition:

- Grade 4 nonhematologic toxicity
- Grade 3 CRS that does not improve to grade 3 within 72 hours
- Grade 3 neurologic toxicity
- Grade 3 toxicity of any vital organs or any grade 3 toxicity lasting > 72 hours
- Grade 4 neutropenia or thrombocytopenia lasting more than 28 days

- One patient experienced grade 1 Bell's palsy that was self-limiting and resolved within 2 weeks.
- One patient experienced grade 4 immune-related thrombocytopenia, which resolved within 2 weeks.

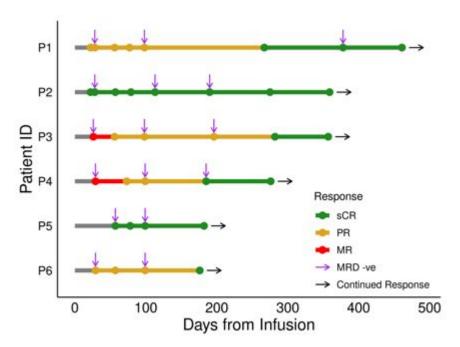

- Hematologic toxicities including grade 3 neutropenia that was transient without any febrile neutropenia
- Transient grade 3 AST/ALT elevation in one patient, which resolved
- No grade 3 infections
- No secondary malignancies to date

CAR-PRISM: Cilta-cel in High-Risk Smoldering Myeloma

Median follow-up: 10.5 months for

safety run-in cohort

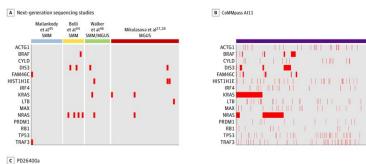
Best response	n	%
Complete Response	6	100
Overall response rate	6	100

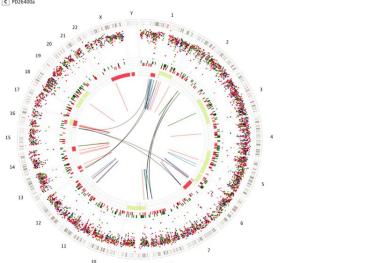


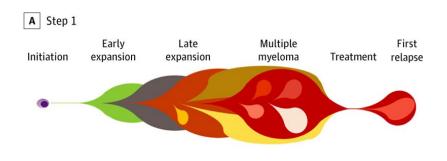
Stem cell collection was successful in all eligible patients with an average stem cell yield of 8.94 x 10⁶ CD34+ cells/kg.

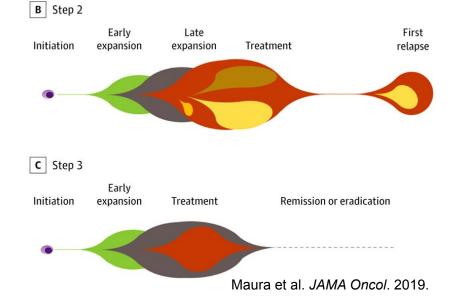
CAR-T in Smoldering Myeloma

CAR-PRISM: Cilta-cel in High-Risk Smoldering Myeloma

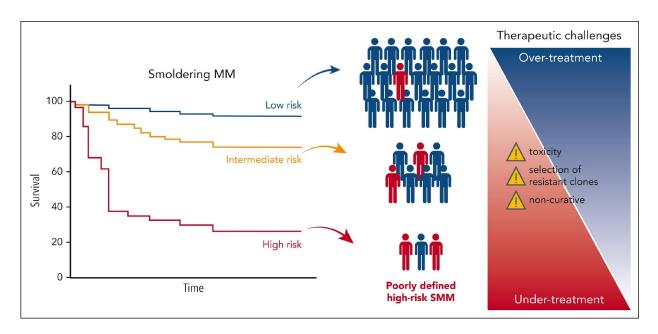

Swimmer's plot and response to therapy




- •Responses continue to deepen over time.
- •MRD negativity occurs early prior to achieving best serologic response.
- •The first 3 patients have **sustained MRD** negativity after 1 year of follow-up.
- •The remainder of patients remain MRD negative at the time of their last follow-up.


No patients have developed biochemical or SLIM-CRAB progression to date.

Genomics: Better Stratification?



Unresolved Questions

Is it a true precancerous condition?

Does early treatment eradicate the clone?

Treated as MM?

Are the current/ongoing trials adequate to answer the question?

Conclusions

- Not a single disease
- Risk stratification evolving and will be refined with time
- Treatment results are encouraging; fundamental questions remain
- Close "watch and see" vs clinical trials in patients with high-risk SMM
- Risk-benefit ratio and personalized treatment approaches
- Early immunotherapy vs combination?

Acknowledgements

MCW MULTIPLE MYELOMA TEAM (clinical)

- **Binod Dhakal**
- Anita D'Souza
- Marcelo Pasquini
- Meera Mohan
- Othman Akhtar
- Ravi Narra

MCW MULTIPLE MYELOMA (basic science)

- Siegfried Janz
- Deepak Parashar
- **Anthony Zamora**
- Sabari Radhakrishnan

NON-MCW COLLABORATORS

- Fotis Asimakopoulos (UCSD)

- MCW Clinical Trials Office
- MYELOMA PATIENTS AND CAREGIVERS

THANKYOU

PANEL DISCUSSION

Q&A

