Frontline Myeloma

PRESENTER

UC San Diego Health

PANELISTS

Sham Mailankody, MD Memorial Sloan Kettering Cancer Center

Peter Voorhees, MD
Atrium Health

Medical College of Wisconsin

Presenter

Caitlin Costello, MD
UC San Diego Health

Updates in Newly Diagnosed Multiple Myeloma

Caitlin Costello, MD
Clinical Professor of Medicine
Director, Multiple Myeloma Program
Moores Cancer Center
UC San Diego

Disclosures

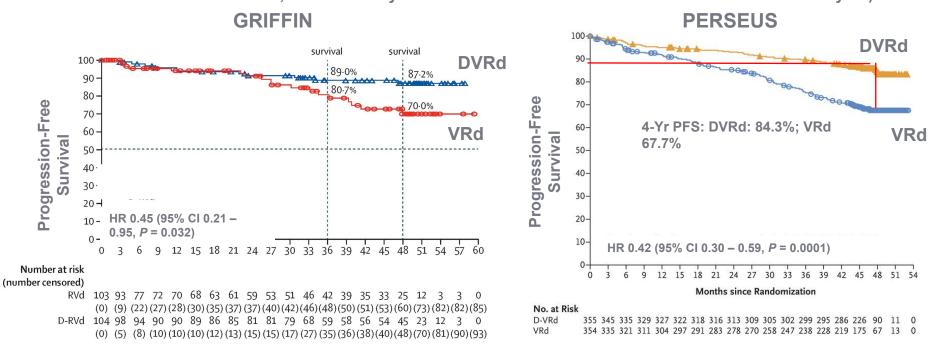
- Consultancy/Honoraria: AstraZeneca, BMS, Janssen, Pfizer, Karyopharm,
 Genentech, Kite
- Research Funding: AstraZeneca, BMS, Janssen, Pfizer, Kite, Poseida

Goals of Induction Therapy

High rate of response (at least VGPR, MRD neg)

Achieve rapid disease control

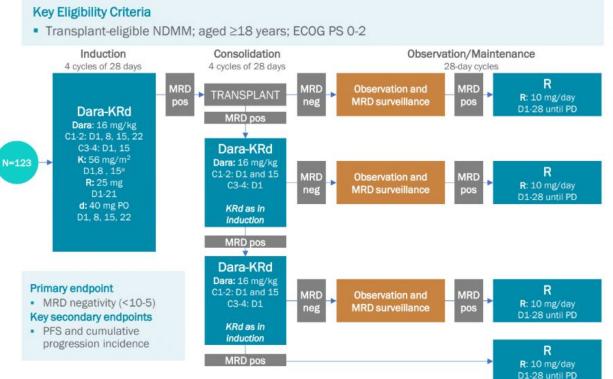
Minimal Toxicity


Adequate stem cell harvest

Fit Patients and Upfront Transplant

CD38 mAb / IMiD / PI Quadruplets + Upfront Autologous Stem Cell Transplantation in Newly Diagnosed Myeloma

Randomized phase II (GRIFFIN) and phase III (PERSEUS) studies of VRd ± daratumumab (4 cycles induction, 2 cycles post-transplant consolidation) □ ASCT □ lenalidomide ± daratumumab maintenance (GRIFFIN: 2 years of daratumumab maintenance; PERSEUS: 2 years of daratumumab maintenance if CR and MRD- for ≥1 year)

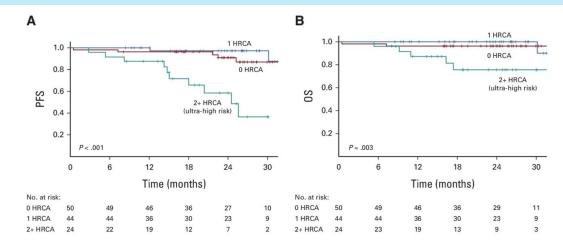

Sborov D et al. Lancet Haematol 2023;10:e825-e837. Sonneveld P et al. New Engl J Med 2024;390:132-147

PRESENTED BY:

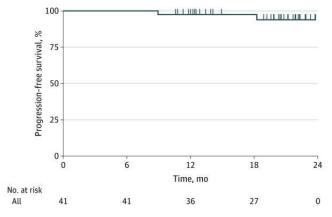
MASTER: Dara-KRd to R as MRD-Guided Therapy in Transplant-Eligible NDMM

Study Design and Patients

Patient Charac	Dara-KRd (N=123)	
Median age (IC	61 (55-68)	
ECOG PS, n	0-1	99 (80)
(%)	2	24 (20)
	1	48 (39)
ISS stage, n (%)	H	46 (37)
	III	29 (24)
	Hyperdiploidy	51 (41)
Cytogenetic	del(13q)	57 (46)
	Gain or amplification of 1q	44 (36)
abnormality,	del(1p)	12 (10)
n (%)	t(11;14)	21 (17)
	t(4;14)	21 (17)
	t(14;16)	6 (5)
	del(17p)	26 (21)
MRD trackable	118 (96)	


Omitted D1; 20 mg/m² D8 on C1. Costa LJ, et al. Lancet Haematol. 2023;10(11):e890-e901

Hem@nc Pulse LIVE


33

Dara-KRd Induction

MASTER

MANHATTAN

- Single Arm Trials of DKRd induction
- MRD negativity as primary endpoints
- Can carfilzomib-based quads overcome HRCA?

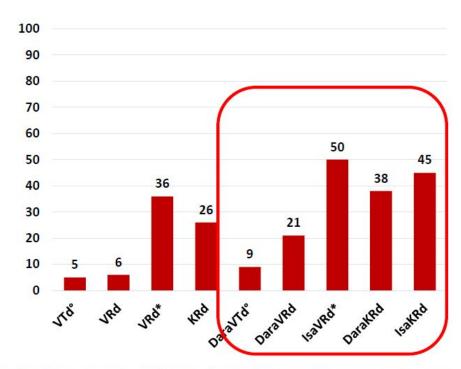
Summary of Data in <u>Transplant-Eligible</u> NDMM

	PERSEUS ¹	GMMG-HD7 ²	GRIFFIN ^{3,4}	MASTER ⁵	GMMG-CONCEPT ⁶	IsKia ⁷
Induction Maintenance	Dara-RVd vs RVd Dara-R vs R	Isa-RVd vs RVd Isa-R vs R	Dara-RVd vs RVd Dara-R vs R	Dara-KRd R/MRD surveillance	Isa-KRd Isa-KR	Isa-KRd vs KRd R
Total N	355 vs 354	331 vs 329	104 vs 103	123	99 (transplant eligible, high- risk disease)	151 vs 151
Median follow-up	47.5 mo	NA	49.6 mo	42.2 mo	44 mo	21 mo
≥VGPRª ≥CRª	NA 88% vs 70%	83% vs 69% 44% vs 34%	90% vs 73% 52% vs 42%	NA 72%	91% 73%	94% vs 94% 74% vs 72%
MRD-neg 10 ⁻⁵ a	75% vs 48%	66% vs 48%	50% vs 20%	81%	68%	77% vs 67%
PFSª	4 year: 84% vs 68%	NA	4 year: 87% vs 70%	NA	3 year: 69%	1 year: 95% vs 95%

No direct comparisons can be made without head-to-head studies.

Caitlin Costello, MD

a Post-consolidation in transplant-eligible patients.

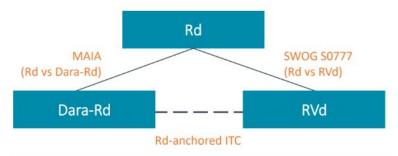

^{1.} Sonneveld P. et al. ASH 2023. Abstract LBA-1. 2. Raab MS, et al. EHA 2024. Abstract S202, 3. Voorhees PM, et al. Lancet Haematol. 2023;10(10):e825-e837. 4. Sborov DW, et al. IMS 2022. Abstract OAB-057. 5. Costa LJ, et al. Lancet Haematol. 2023;10(11):e890-e901. 6. Leypoldt LB, et al. J Clin Oncol. 2024;42(1):26-37. 7. Gay F, et al. ASH 2023. Abstract 4.

Response and MRD negativity post induction

Post-induction ≥ VGPR rates

100 90 82 80 70 40 30 20 10

Post-induction MRD negativity rates


Avet Loiseau H, et al. Blood 2021;138 (Suppl 1):82 (oral presentation); Voorhees et al Blood 2020, Goldschmidt H et al Lancet haem 2022; Gay F et al ASH 2023 and manuscript under review; Costa L et al JCO 2022; Abbreviations: MRD measurable residual disease; VGPR: very good partial response; V: Bortezomib; R: Lenalidomide; d: dexamethasone; K: Carfilzomib; Dara: Daratumumab; Isa: Isatuximab, T: talidomide. All MRD evaluation by next generation sequencing, except * that was evaluated byy next generation flow. *MRD plus CR.

Transplant Ineligible or Deferred

SWOG S0777 vs MAIA^{1,2}

Adjusted Indirect Treatment Comparison of PFS

Study Design

- Harmonized inclusion criteria (NDMM, aged ≥65 years, ECOG PS ≤2) were applied to both trial populations^a
- Propensity score reweighting was used to balance the 2 study populations on key baseline patient characteristicsb,c
- After alignment of inclusion criteria and PS reweighting, PFS HRs within MAIA and SWOG S0777 trials were used to conduct an indirect inference of PFS for Dara-Rd vs RVd

	SWOG 0777 VRd vs Rd	MAIA Dara-Rd vs Rd			
Total N	198	727			
Median age	72.67 years	72.70 years			
PFS	41 vs 29 mo HR=0.88 (95% CI, 0.63-1.23) <i>P</i> =0.46	62 vs 34 mo HR=0.53 (95% CI, 0.41-0.68) <i>P</i> <0.0001			
ITC: Dara-RD vs RVd	HR=0.60 (95% CI, 0.39-0.90) P=0.02				

^a Aged ≥65 years served as a proxy for transplant-ineligible status, as SWOG S0777 enrolled a mixed population of patients. without intent for immediate ASCT, b Absolute standardized differences were <0.1 for all covariates, indicating good covariate balance, 6 High cytogenetic risk was defined in MAIA and SWOG S0777 as the presence of ≥1 high-risk cytogenetic abnormality (del[17p], t[14;16] or t[4;14]). Durie BGM, et al. ASCO 2023. Abstract 8037. 2. Durie BGM, et al. Adv Ther. 2024;41(5):1923-1937.

39

13

CD38 mAb / IMiD / PI Quadruplets in Newly-Diagnosed Myeloma: Transplant Deferred and Ineligible

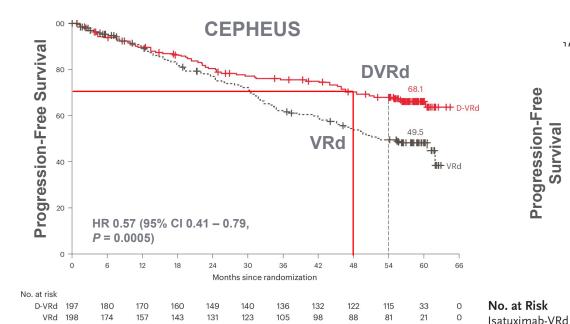
Randomized phase III studies of VRd ± CD38 mAbs (CEPHEUS: Daratumumab; IMROZ: Isatuximab)

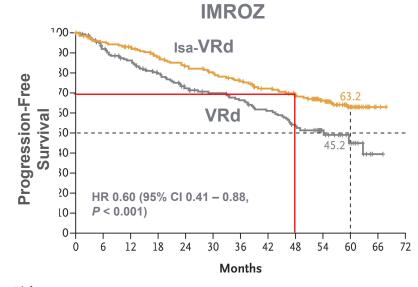
Key Eligibility Criteria

- ECOG PS 0 2; Frailty index <2
- Transplant ineligible: Age 70 80. <70 with comorbidities
- Transplant deferred allowed

DVRd vs VRD

- Median age: 70 (42 79) vs 70 (31 80)
- ≥70 v/o: 55.3% vs 55.6%
- Transplant deferred: 26.9% vs 26.8%


VRd alone


Key Eligibility Criteria ECOG PS 0 - 2. age ≤80

Transplant ineligible: Age ≥65 or comorbidities precluding ASCT

Isa-VRD vs VRD

- Median age: 72 (60 80) vs 72 (55 - 80)
- ≥70 y/o: 69.4% vs 69.1%

Facon T et al. New Engl J Med 2024:391:1597-1609

Usmani S et al. Nature Med 2025; ePub ahead of print.

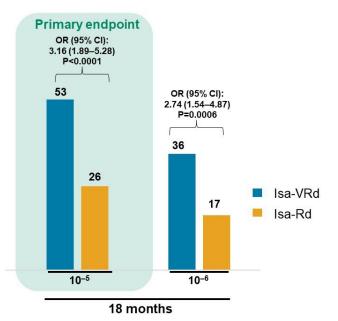
Caitlin Costello, MD

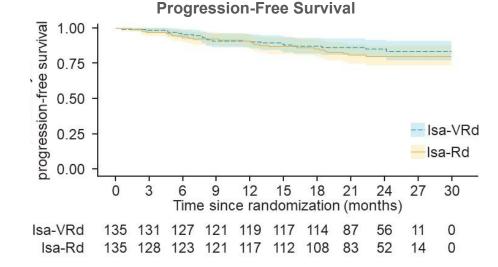
190

96

243 234 217

181 155 141 121 104


CD38 mAb / IMiD / PI Quadruplets in Transplant-Ineligible Patients with Newly-Diagnosed Myeloma: The BENEFIT of Bortezomib


Phase III study of Isa-Rd ± Bortezomib

Study Design: Isa-Rd x 12 cycles □ Isa-R cycles 13+. For the Isa-VRd arm, bortezomib on days 1, 8 and 15 of cycles 1 – 12 and days 1 and 15 of cycles 13 – 18 added.

Key Eligibility Criteria: Deemed not transplant eligible, ages ≥65 – 79 years, frailty score <2, ECOG PS 0 – 2

Measurable Residual Disease

Estimated 24 months PFS

85.2% (95%Cl 79.2–91.7) for Isa-VRd 80.0% (95% Cl 73.3–87.4) for Isa-Rd

Leleu X et al. Nat Med 2024;30:2235-2241

Hem@nc Pulse LIVE

Transplant-Ineligible/-Deferred NDMM

		SW0G S07771		MAIA ²⁻⁴		IMROZ ^{5,6}		CEPHEUS ⁷		BENEFIT ⁸⁻¹⁰	
		VRd (n=235)	Rd (n=225)	DRd (n=368)	Rd (n=369)	Isa-VRd (n=285)	VRd (n=190)	D-VRd (n=197)	VRd (n=198)	Isa-VRd (n=135)	Isa-Rd (n=135)
	Population		s ≥18 yª t-deferred patients)		frail & older patients	Patients (excludes pa	18-80 y tients >80 y)		s ≥18 y t-deferred patients)	Nonfrail pati (excludes fr	ents 65-79 y ail & ≥80 y)
	Median follow-up	84 mo		89.3 mo		59.7 mo		58.7 mo		23.5 mo	
ī	≥CR rate	24.2%	12.1%	51.1% ^b	30.1% ^b	74.7%	64.1%	81.2%	61.6%	58%	31%
رخ رخ	≥CR_MRD-neg (10 ⁻⁵) rate	N/A	N/A	32.1% ^b	11.1% ^b	58.1%	43.6%	60.9%	39.4%	53%	26%
EFFICACY	PFS	41 mo	29 mo	60-mo: 52.1% Median: 61.9 mo ^b	60-mo: 29.6% Median: 34.4 mo ^b	60-mo: 63.2% Median: NR	60-mo: 45.2% Median: 54.3 mo	54-mo: 68.1%	54-mo: 49.5%	24-mo: 85.2% Median: NR	24-mo: 80% Median: NR
	os	NR	69 mo	60-mo: ~67% Median: 90.3 mo	60-mo: ~54% Median: 64.1 mo	60-mo: 72.3%	60-mo: 66.3%	NR	NR	24-mo: 91.1%	24-mo: 91.5%
	Grade 5 AEs	<3%	<2%	6.9%	6.3%	11.0%	5.5%	10.7%°	7.7%°	Not reported	Not reported
	Serious TEAEs	N/A	N/A	62.9%	62.7%	70.7%	67.4%	Not reported	Not reported	34%	35%
SAFETY	Discontinuation due to TRAEs	N/A	N/A	7.1%	25.8%	22.8%	26.0%	Not reported	Not reported	Not reported	Not reported
	Infections	19% gr 3/4	14% gr 3/4	42.6% gr 3/4	29.6% gr 3/4	44.9% gr ≥3	38.1% gr ≥3	40.1% gr 3/4	31.8% gr 3/4	35% grade ≥2 ^d	40% grade ≥2 ^d
	Peripheral neuropathy	Gr ≥3 neurologic AEs: 34.6%	Gr ≥3 neurologic AEs: 11.3%	2.5% gr 3/4	0.5% gr 3/4	7.2% gr ≥3	6.1% gr ≥3	8.1% gr 3/4	8.2% gr 3/4	27% grade ≥2	10% grade ≥2

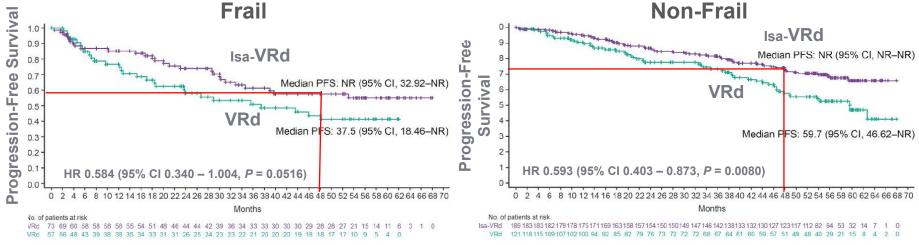
No direct comparisons can be made without head-to-head studies.

OPINIONS IN ANTI-CD38-CONTAINING REGIMENS FOR NDMM

^{*} Aged ≥65 years served as a proxy for transplant-ineligible status, as SWOG S0777 enrolled a mixed population of patients without intent for immediate ASCT. Median follow-up of 64.5 months. *Non-COVID grade 5 events. *Infections of the respiratory system. *Absolute standardized differences were <0.1 for all covariates, indicating good covariate balance. *High cytogenetic risk was defined in MAIA and SWOG S0777 as the presence of 21 high-risk cytogenetic abnormality (del/17n) 1/14:161 or 1/4:141).</p>

presence of 21 high-risk cytogenetic abnormality (del[17p], (114;16] or (14;14]).

1. Durie BGM, et al. Blood Cancer J. 2020;10(5):53. 2. Facon T, et al. EHA 2024. Abstract P968. 3. Kumar S, et al. ASH 2022. Poster 4559.


4. Facon T, et al. N Engl J Med. 2019;380(22):2104-2115. 5. Facon T, et al. N Engl J Med. June 3, 2024. 6, Facon T, et al. ASCO 2024. Abstract 7500. 7. Usmani SZ et al. IMS, 2024. Abstract OA63.8. Leleu X, et al. Nat Med. 2024. 9. Leleu XP, et al. ASCO 2024. Abstract 7500. 10. Leleu XP, et al. EHA 2024. Abstract 500.

Frail Patients

CD38 mAb / IMiD / PI Quadruplets in Frail Patients with NDMM: An IMROZ Subset Analysis

- Key Eligibility Criteria: ECOG PS 0 2, transplant ineligible (age 65 79 or any age with comorbidities precluding safe transplant)
- Modified IMWG Frailty Score: Based on age, modified Charlson Comorbidity Index, ECOG PS.
- Frailty score 0 or 1: Non-frail; ≥2: Frail.
- 29% of patients were deemed frail (Isa-VRd 28%; VRd 32%)
- Frail group enriched for patients with higher ECOG PS and ISS stage

- OS worse in frail vs non-frail patients
- No difference in OS between Isa-VRD vs VRd arms for frail (HR 0.826, 95% CI 0.490 1.392, P = 0.4720) and non-frail (HR 0.734, 95% CI 0.453 1.188, P = 0.2076) patients

Manier S et al. IMS 2024

CD38 mAb / IMiD / PI Quadruplets in Frail Patients with NDMM: An IMROZ Subset Analysis

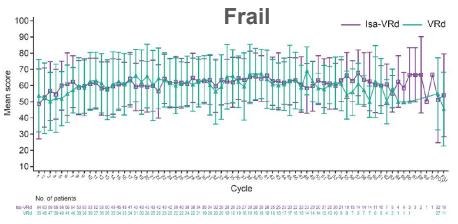
Median duration of treatment (Isa-VRD vs RVd)

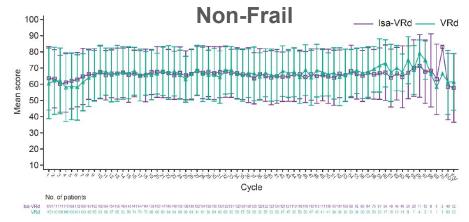
Frail: 31.5 vs 23.7 mos

Non-Frail: 55.2 vs 36.6 mos

Median Relative Dose Intensity for Isa

• Frail vs Non-Frail: 92.1% vs 94.0%

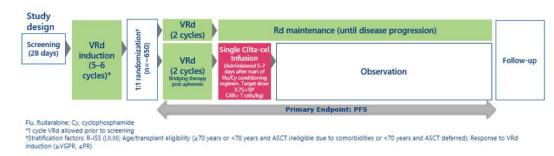

Median Relative Dose Intensity for Bortezomib


Frail: 90.3% vs 83.4%

Non-Frail: 90.0% vs 87.5%

Safety Metric	Fra	ail	Non-Frail	
	Isa-VRd	VRd	Isa-VRd	VRd
D/C for any reason	71.23%	82.46%	46.03%	72.73%
D/C 2/2 Adverse Events	30.14%	35.09%	20.11%	24.79%
Any ≥Grade 3 TEAE (event rate per year)	2.221	3.248	1.832	2.141
Any Grade 5 TEAE (event rate per year)	0.975	1.979	0.509	0.416
Any TE SAE (event rate per year)	1.051	1.340	0.989	1.296

QoL as measured by the EORTC-QLQ-C30


Manier S et al. IMS 2024.

The Future?

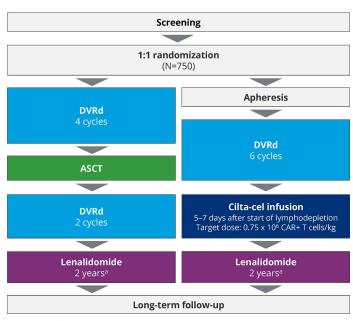
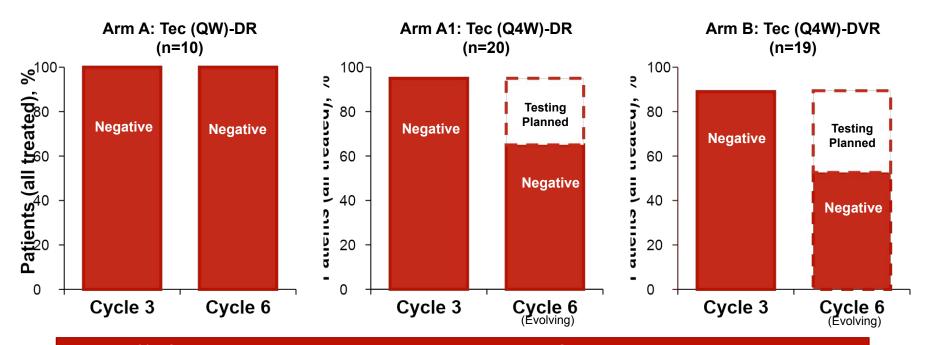

CARTITUDE 5 & 6 - the role of CART as consolidation

Figure: CARTITUDE-5 study design

NDMM Transplant ineligible/ not intended Primary endpoint: PFS

CARTITUDE-6



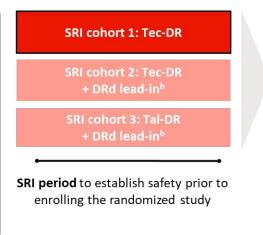
^aPatients benefiting from therapy have the option to continue lenalidomide therapy until progressive disease per investigator's discretion after benefit-risk assessment and review by the medical monitor.

NDMM Transplant eligible/Fit patients Primary endpoint: PFS and MRD12m

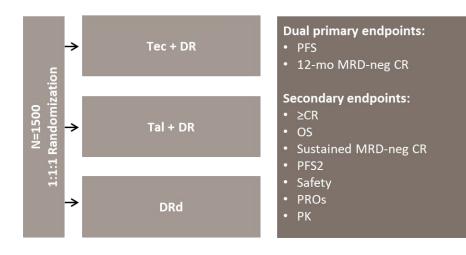
Teclistamab-Based Triplets and Quadruplets in Transplant Eligible Patients with Newly Diagnosed Myeloma: Majes TEC-5

100% of evaluable patients achieved MRD negativity by C3; no patients were MRD positive

Raab M et al. ASH 2024



Caitlin Costello, MD

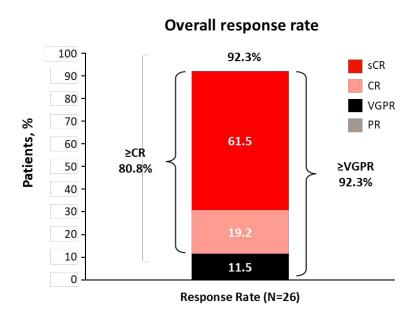

Teclistamab-Based Quadruplets in Transplant Ineligible Patients with NDMM: MajesTEC-7 Safety Run-In

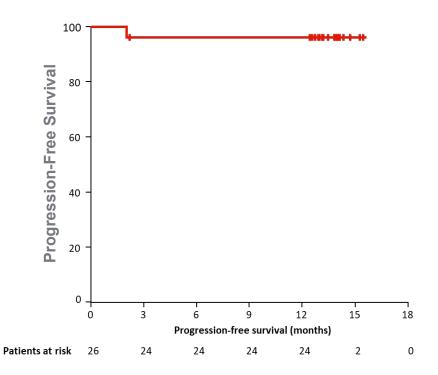
Key eligibility criteriaa:

- NDMM either ineligible or not intended for ASCT
- ECOG PS 0-2

Caitlin Costello. MD

SRI cohort 1
Tec-DR


mFU	Cycle 1	Cycle 2	Cycle 3–6	Cycle 7+ until PD
13.8 mo	Tec step-up ^c	Tec 1.5 mg/kg QW	Tec 3 mg/kg Q2W	Tec 3 mg/kg Q4W
(range, 2.0–15.4)	+ D	+ DR	+ DR	+ DR


Touzeau C et al. ASH 2024

Teclistamab-Based Quadruplets in Transplant Ineligible Patients with NDMM: MajesTEC-7 Safety Run-In

Median Follow-Up: 13.8 months

Touzeau C et al. ASH 2024

Conclusions

- Quadruplets are a new standard of care for patients with newly diagnosed myeloma
 - Triplets remain an important standard of care: Age ≥80, frail patients defined more rigorously
- The best PFS outcomes are those with quadruplets and upfront transplant
- MRD as the right clinical endpoint?

Caitlin Costello, MD

Promising early data with T cell redirecting therapies in the management of newly diagnosed patients

THANKYOU

