CML & MPN

MODERATOR Naval Daver, MD

PRESENTERS

Fadi Haddad, MD MD Anderson Cancer Center

Pankit Vachhani, MD University of Alabama Birmingham

PANELISTS

Naseema Gangat, MD

Mayo Clinic

Michael J. Mauro, MD Memorial Sloan Kettering **Cancer Center**

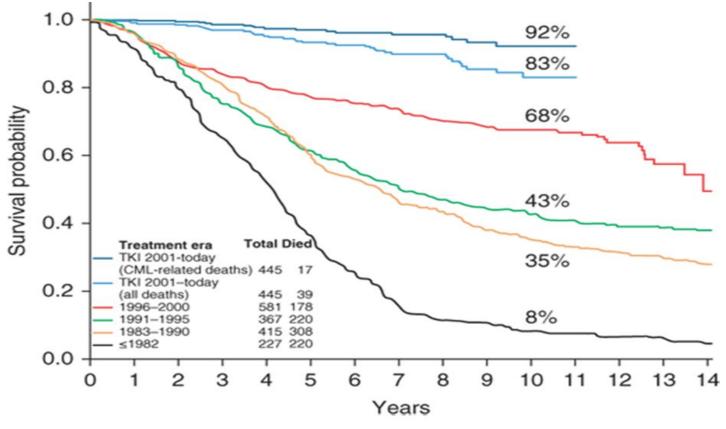
City of Hope

Prithviraj Bose, MD MD Anderson Cancer Center

Updates in Chronic Myeloid Leukemia

Presenter

Fadi G. Haddad, MD


Assistant Professor, Leukemia Department MD Anderson Cancer Center

Disclosures

Consulting: Amgen

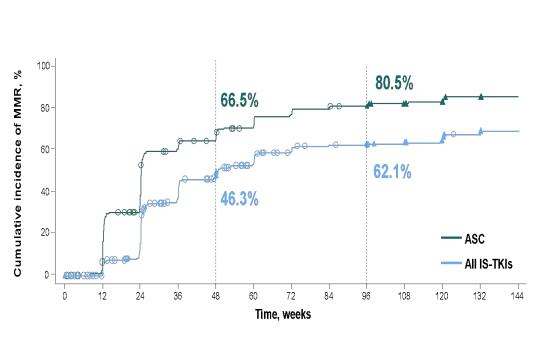
Advisory board: Sobi

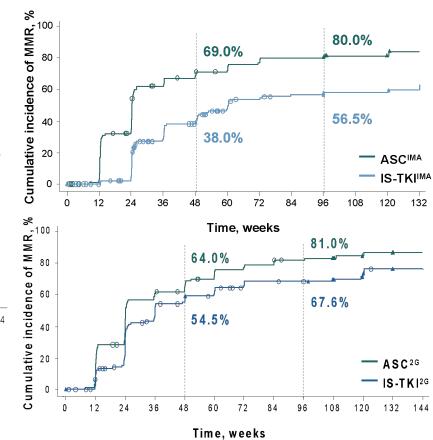
What's New in 2024-2025?

TKI = tyrosine kinase inhibitor; CML = chronic myeloid leukemia. Kantarjian H et al. *Harrison's Principles of Internal Medicine*. 20th ed. McGraw Hill; 2018.

First-Line Therapy

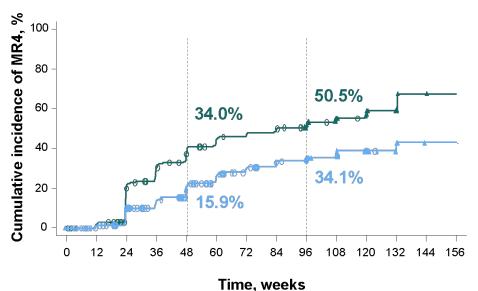
Asciminib in Newly Diagnosed CML-CP: ASC4FIRST

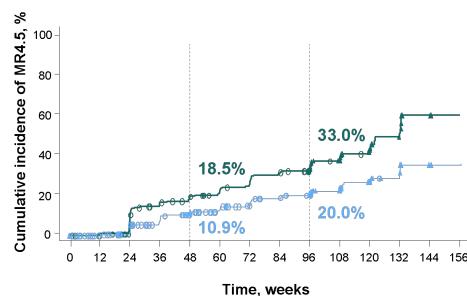

- 405 patients with newly diagnosed CML-CP randomized to asciminib (n=201) or investigator's choice (IS) of imatinib or second-generation TKIs (n=204)
- Patients in imatinib group were older (age ≥65 years) with higher cardiovascular disease risk, compared with those in 2G-TKI group


Rates at 48 weeks (%)	Primary End Point 1		Primary End Point 2	
	Asciminib (N=201)	All TKIs (N=204)	Asciminib (N=101)	lmatinib (N=102)
MMR	67.7	49.0	69.3	40.2
MR4	38.8	20.6	42.6	14.7
MR4.5	16.9	8.8	17.8	4.9

CML-CP = chronic phase CML; MMR = major molecular response. Hochhaus A et al. *N Engl J Med.* 2024;391(10):885-898.

ASC4FIRST: Cumulative MMR at 96 Weeks


Cortes JE et al. Blood. 2024;144(suppl 1):475.



ASC4FIRST: Cumulative Deep Molecular Responses at 96 weeks

Cumulative MR4

Cumulative MR4.5

Cortes JE et al. Blood. 2024;144(suppl 1):475.

Post-Baseline Treatment-Emergent BCR::ABL1 Gene Mutations (by NGS)

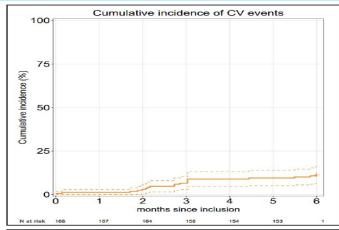
Patients	Post-baseline mutations	Discontinuation reason	Post-protocol therapy (Second line and beyond)	Last disease/survival status			
Asciminib	Myristoyl pocket						
1	A433D		Bosutinib, dasatinib	CP/alive			
2	A337V, V506M ^b		Dasatinib	CP/alive			
3	A337T, A344P,b P465Q,b I502Nb	T	Dasatinib	AP/ali∨e			
4	A433D	Treatment failure per ELN	Dasatinib, olverembatinib	AP/ali∨e			
5	A337T, V506M ^b		Ponatinib	Discontinued study			
6	L340Q		Not a∨ailable	Discontinued study			
7 c	A337T	Confirmed loss of MMR	Dasatinib	Discontinued study			
8	A337T, L340Q	Unsatisfactory therapeutic effect (other)	Dasatinib	CP/alive			
9	A337T, ^b F497L ^b	Progressive disease (BP)	Ponatinib	CP/death post HSCT			
10 ^c	A337V	Ongoing on study	Not applicable				
Imatinib	ATP-binding domain						
1	L248V, E255V,b G250Eb		Flumatinib, olverembatinib	BP/death post HSCT			
2 ^c	F317L ^b	Treatment failure per ELN	Imatinib	CP/alive			
3	L248V, E450G ^b	<u> </u>	Nilotinib	CP/alive			
4 °	E459K	Confirmed loss of MMR	Dasatinib	CP/alive			
Nilotinib	ATP-binding domain						
5 ^c	Y253H	Treatment failure per ELN	Dasatinib	CP/alive			
6	Y253H	Treatment failure per LLIN	Dasatinib, ponatinib	CP/alive			
7	Y253H ^b	Ongoing on study	Not applicable				

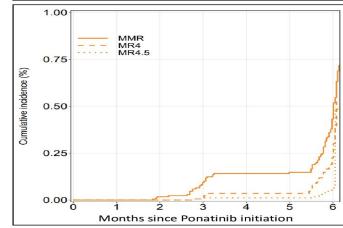
ATP = adenosine triphosphate; ELN = European Leukemia Network; BP = blast phase; CP = chronic phase; AP = accelerated phase; HSCT = hematopoietic stem cell transplantation.

Cortes JE et al. Blood. 2024;144(suppl 1):475.

ASC4FIRST: Side Effects

Rates by week 96 (%)	Asciminib	Imatinib	2G-TKI
Grade ≥3 AEs	44.5	49.5	59.8
AEs leading to discontinuation	5.0	13.1	12.7
AEs leading to dose adjustment/interruption	33.0	41.4	57.8
Patients with ≥1 AOE	2.0	0	2.9


Since the week 48 cutoff, 2 additional patients had AOEs with asciminib and 1 with bosutinib


AE = adverse event; AOE = arterial occlusive event. Cortes JE et al. *Blood*. 2024;144(suppl 1):475.

Trial of Imatinib After Ponatinib Induction (TIPI)

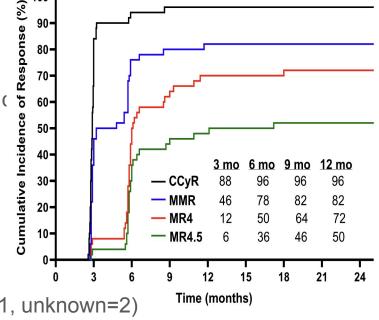
- Ponatinib 30 mg/day for 6 months then imatinib 400 mg/day until MR4.5 ≥ 2 years (TFR criteria)
- 169 patients, no significant CV disease, ELTS high risk in 16%
- 135 grade 3-5 AEs: grade 3 = 91%, grade 4 = 8%, and 1 fatal AE
- 6 grade 3-5 cardiac events (1 fatal cardiac arrest)
- 17 (12.5%) vascular events (15 hypertension, 1 pulmonary embolism?, 1 carotid stenosis)

CV = cardiovascular; TFR = treatment-free remission; ELTS = EUTOS long-term survival (ELTS) score; EUTOS = European Treatment Outcome Study. Nicolini FE et al. *Blood*. 2023;142(suppl 1):445.

Trial of Imatinib After Ponatinib Induction (TIPI)

Median follow-up 18 months, EMR with ponatinib = 97%, loss of MMR on imatinib = 8%

Molecular response rate (%)	Month 6 (end of ponatinib)	Month 9	Month 12	Month 18
MMR	44	59	65	68
MR4	23	32	33	40
MR4.5	7	8	10	13


- Grade 3-5 AEs in **39 patients** between M6 and M18: 13 (33%) during imatinib treatment, none of them cardiovascular AE
- 3 deaths: 1 sudden at 2.5 months, 2 from blast phase crisis post SCT (months 3 and 8)

EMR = extramedullary relapse.

Nicolini FE et al. *Blood.* 2024;144 (suppl 1):478.

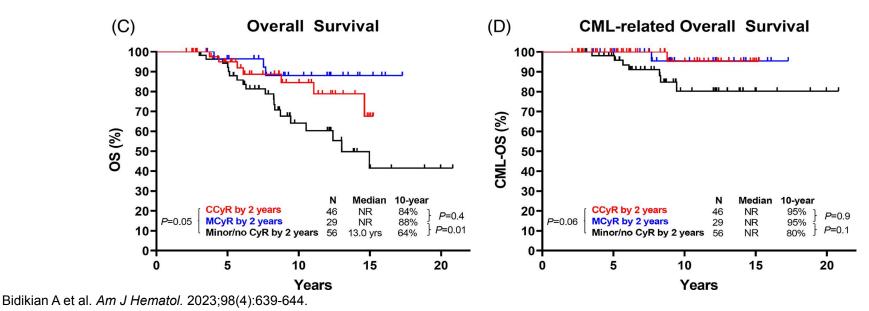
Ponatinib in Frontline CML-CP: MD Anderson Experience

- 51 patients treated at 45 mg/day
- Median age, 48 years (21-75); 59% had ≥1 CV comorbidities
- Median time on treatment, 13 months (2-25)
- Discontinuation due to FDA warning (42%), study
 (28%), toxicity (28%)
- No transformation, 1 patient had transplant
- 8 (16%) serious CV AEs in 6 patients, 5 leading to
- 6emoantbr/MRi4சை611%வெi2rmonth MMR = 82%
- 10-year OS = 90%, 4 deaths (MDS=1, renal failure=1, unknown=2)

FDA = US Food and Drug administration; OS = overall survival; MDS = myelodysplastic syndrome. Haddad FG et al. *Cancer*. 2024;130(19):3344-3352.

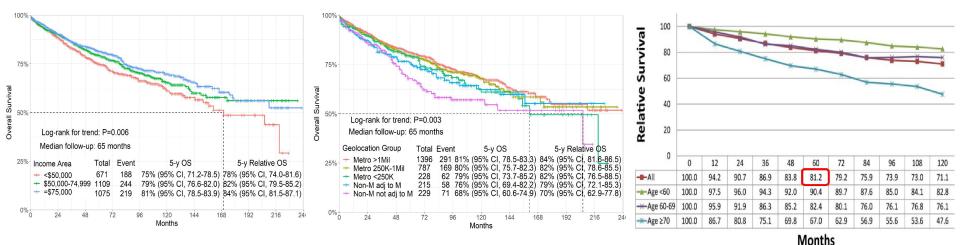
Impact of Additional Genetic Abnormalities on Outcomes in CML-CP

- Cohort of 515 patients (imatinib = 200, dasatinib = 76, nilotinib = 140, asciminib = 99)
- Incidence of cancer-related gene variants (CGVs) = 18%, most frequently ASXL1 (8%)
- CGVs associated with
 - Higher rate of treatment failure: 2-year FFS 76% vs 92% (P<0.001)
 - Higher rate of acquisition of KD mutations at 2 years: 11% vs 0.3% (P<0.001)
 - Lower rate of MMR at 12 months: 63% vs 82% (*P*=0.002)
- ASXL1 particularly associated with worse outcome: 12-month MMR (55% vs 82%),
 2-year FFS (68% vs 93%), 2-year KD mutation acquisition (27% vs <0.3%)
- No impact on overall survival or transformation-free survival


KD = kinase domain.

Shanmuganathan N et al. Blood. 2024;144(suppl 1):991.

Outcome of CML-CP With No MMR at 2 Years


- 131 patients with CML-CP and no MMR after 2 years of TKIs
- 79 (60%) achieved later MMR, 24 (30%) on same TKI, 48 (61%) after changing TKI, 9 (11%) after transplant
- Overall: 10-year OS = 76%; 10-year CML-specific OS = 89%

Hem@nc Pulse LIVE

Outcomes of CML in the USA: SEER 2000-2019

- SEER database of 2,857 patients with CML
- Lower income = inferior survival (higher costs, out-of-pocket, lack of insurance)
- Smaller geographic populations = inferior outcomes
- Relative OS in USA ≈ 80% vs Europe ≈ 90%
- Around 10%-15% of patients with CML in US not able to access optimal TKIs

SEER = Surveillance, Epidemiology, and End Results Database Sasaki K et al. *Cancer.* 2023;129(23):3805-3814.

Thank you!

Email: fhaddad@mdanderson.org

X: @FadiHaddad_MD

PANEL DISCUSSION

Q&A

