T-Cell Lymphoma

PRESENTER

Jasmine M. Zain, MD Memorial Sloan Kettering Cancer Center

PANELISTS

Swaminathan lyer, MD MD Anderson Cancer Center

Mohamed Kharfan-Dabaja, MD Mayo Clinic

Alejandro (Alex) Sica, MD Montefiore Albert Einstein College of Medicine

MODERATOR Timothy Fenske, MD, MS

Novel Agents and HCT in Nodal T-cell **Lymphomas: Unanswered Questions and Top Research Priorities Novel Agents and HCT in Nodal T-Cell** Lymphomas: Unanswered **Questions and top Research Priorities**

Presenter

Jasmine M. Zain, MD

Memorial Sloan Kettering Cancer Center

DISCLOSURES

- Grant support- Seattle Genetics, Secura Bio, Astra Zeneca, Myeloid, CRSPR, Daiichi Sankyo
- Consultancy- Secura Bio, Citius, Myeloid, Kyowa Kirin
- Speaker Bureau- Kyowa Kirin

Jasmine Zain

KEY CHALLENGES IN TREATING NODAL PERIPHERAL T-CELL LYMPHOMAS

- Upfront therapy- how to choose the best regimen for my patient
- Should ASCT be offered in CR1?
- Relapsed disease how to optimize treatment options
- Role of allogeneic stem cell transplant
- Special populations- elderly, frail
- Rare subtypes

Jasmine Zain

#HOPLive

Current State

NCCN Guidelines Version 1.2025 Peripheral T-Cell Lymphomas

NCCN Guidelines Index
Table of Contents
Discussion

SUGGESTED TREATMENT REGIMENSa,b

	FIRST-LINE THERAPY ^C
ALCL ^d	Preferred regimen Brentuximab vedotin + CHP (cyclophosphamide, doxorubicin, and prednisone) ⁶ (category 1) Other recommended regimens (alphabetical order) Dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin) CHOEP ^f (cyclophosphamide, doxorubicin, vincristine, etoposide, and prednisone) CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone)
Other histologies • PTCL-NOS • EATL • MEITL ^g • AITL (WHO4R)/nodal TFH cell lymphoma, angioimmunoblastic type (WHO5) • Nodal PTCL, TFH (WHO4R)/nodal TFH cell lymphoma, NOS (WHO5) • FTCL (WHO4R)/nodal TFH cell lymphoma, follicular type (WHO5)	Preferred regimens (alphabetical order) • Brentuximab vedotin + CHP for CD30+ histologies ^{e,h} • CHOEP ^f • CHOP • Dose-adjusted EPOCH Other recommended regimens (alphabetical order) • CHOP followed by IVE (ifosfamide, etoposide, and epirubicin) alternating with intermediate-dose methotrexate (Newcastle Regimen; studied only in patients with EATL) ⁱ • HyperCVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone) alternating with high-dose methotrexate and cytarabine (category 3)

FIRST-LINE CONSOLIDATION

Consider consolidation with autologous HCT

Footnotes on PTCL-B 6 of 8

See Initial Palliative-Intent Therapy (PTCL-B 2 of 8) See Second-Line and Subsequent Therapy:

- PTCL-NOS; EATL; MEITL; FTCL (PTCL-B 3 of 8)
- AITL, including nodal PTCL, TFH (PTCL-B 4 of 8)
- · ALCL (PTCL-B 5 of 8)

Note: All recommendations are category 2A unless otherwise indicated.

PRESENTED BY:

PTCL-B 1 OF 8

Version 1.2025, 11/11/24 © 2024 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN.

Heterogeneity of T-Cell Lymphomas

Primarily Leukemic

T-cell prolymphocytic leukemia

T-cell large granular lymphocytic leukemia

Chronic LPD of NK cells

Adult T-cell leukemia/lymphoma

EBV+ T-/NK-Cell LPDs of Childhood

Severe mosquito bite allergy Hydroa vacciniform LPD

Classic and systemic

Severe mosquito bite allergy

Chronic active EBV disease (systemic)

T-cell and NK-cell phenotypes

Systemic EBV+ T-cell lymphoma of childhood

EBV+ T-/NK-Cell Lymphoma/Leukemia

Extranodal NK/T-cell lymphoma (nasal)

Aggressive NK-cell lymphoma

Primary nodal EBV+ T-/NK-cell lymphoma

Primarily Extranodal Entities

Enteropathy-associated T-cell lymphoma

Type II refractory celiac disease

Monomorphic epitheliotropic intestinal T-cell lymphoma

Indolent clonal T-cell LPD of the GI tract

Indolent clonal T-cell LPD of the GI tract

Hepatosplenic T-cell lymphoma

Primarily Nodal and Anaplastic

PTCL NOS (not otherwise specified)

Follicular helper T-cell lymphoma

- AITL
- Follicular
- NOS NOS

ALCL

ALK-

ALK+

Breast implant-associated ALC

Cutaneous T-Cell LPDs/Lymphomas

Mycosis fungoides

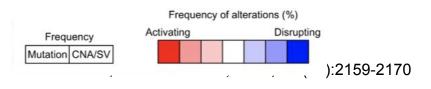
Sezary syndrome

Primary cutaneous CD30+ T-cell LPDs

- Lymphomatoid papulosis
- Primary cutaneous anaplastic large-cell lymphoma

Primary cutaneous small/medium CD4+ T-cell LPD

Subcutaneous panniculitis-like T-cell lymphoma

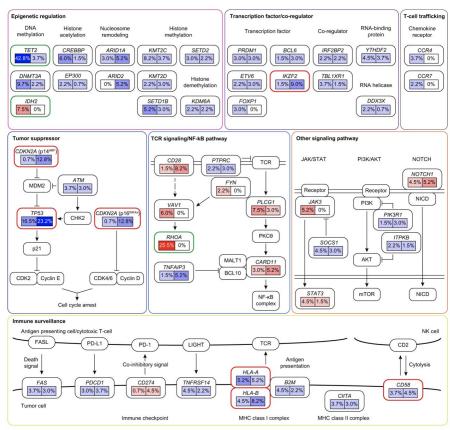

Primary cutaneous gamma-delta T-cell lymphoma

#HOPLive 7

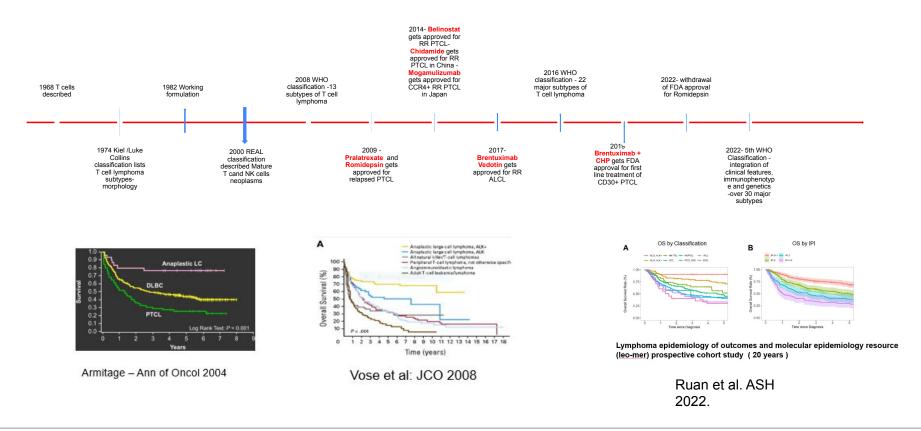
Primary cutaneous acral CD8+ T-cell LPD

Primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma

Molecular Heterogeneity of PTCL-NOS



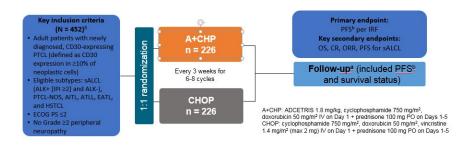
Most common alterations


- Epigenetic regulation 50/133
- Tumor suppressor 42/133

Significant heterogeneity

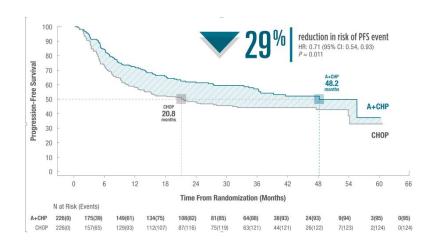
- 80% carried ≥ 1 mutation
- 49 "recurrently" altered genes (found in ≥ 3 cases)
- But only 10 were affected in ≥ 5% of the cases

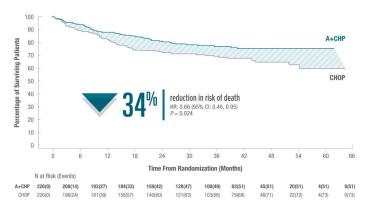
Progress in the Field


Brentuximab Plus CHP vs CHOP

Echelon -2 Frontline treatment with A+CHP vs CHOP for newly diagnosed, CD30-expressing PTCLs demonstrated a 29% reduction in risk of PFS event (HR: 0.71; 95% CI: 0.54-0.93; P = 0.011)

A+CHP more than doubled median PFS vs CHOP (48.2 vs 20.8 months, respectively)


34% reduction in risk of death with A+CHP (HR: 0.66; 95% CI: 0.46-0.95; P = 0.024)¹ Median OS was not reached in either arm

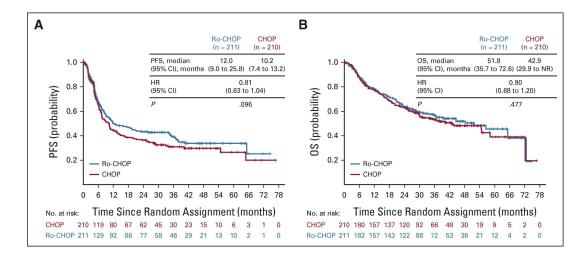

A+CHP has a comparable safety to CHOP

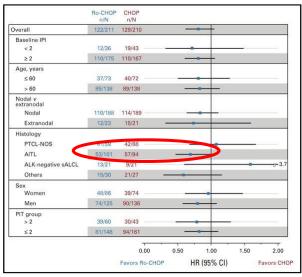
PRESENTED BY:

Horwitz et all. Lancet. 2019.

Food for Thought

Analysis by Subtypes: Estimated 5-year PFS and OS rates in prespecified subgroups


	Р	resentation last saved: Just n	ow					
Subgroup	Estimated 5-y A+CHP	ear PFS rate CHOP	HR (95% CI)	P-value	Estimated ! A+CHP	5-year OS rate CHOP	HR (95% CI)	P-value
PTCL subtype	7. 0.11	0.1101	(55 % 5.)	· value	7. 0.111		(5576 5.1	Valido
PTCL-NOS, % (n)	26.5 (29)	25.7 (43)	0.79 (0.43, 1.43)	0.4	46.2 (29)	35.9 (43)	0.75 (0.37, 1.48)	0.4003
AITL, % (n)	26.6 (30)	48.1 (24)	1.41 (0.64, 3.11)	0.3958	67.8 (30)	62.5 (24)	1.01 (0.40, 2.55)	0.9855
sALCL								
Overall, % (n)	60.6 (162)	48. (154)	0.55 (039, 0.79)	0.0009	75.8 (162)	68.7 (154)	0.66 (0.43, 1.01)	0.0529
ALK+ % (n)	87 (49)	67 (49)	0.40 (0.17, 0.98)	0.0372	91.5 (26)	79.6 (27)	0.48 (0.16, 1.40)	0.1688
ALK- % (n)	49 (113)	39 (105)	0.58 (0.40, 0.86)	0.0054	68.7 (50)	63.3 (41)	0.71 (0.44, 1.12)	0.1373
sALCL, IPI Score								
0–1, % (n)	59.5 (41)	47.6 (32)	0.42 (0.18, 0.94)	0.0301	87.0 (41)	86.2 (32)	0.73 (0.20, 2.73)	0.6411
2–3, % (n)	68.5 (95)	50.9 (100)	0.57 (0.35, 0.90)	0.0158	80.6 (95)	68.7 (100)	0.57 (0.32, 1.01)	0.0496
4–5, % (n)	27.2 (26)	36.4 (22)	0.73 (0.35, 1.50)	0.3839	38.0 (26)	43.2 (22)	0.89 (0.42, 1.89)	0.7606


ITT, intent-to-treat; IPI, International Prognostic Index

Horwitz et al. ASH 2021.

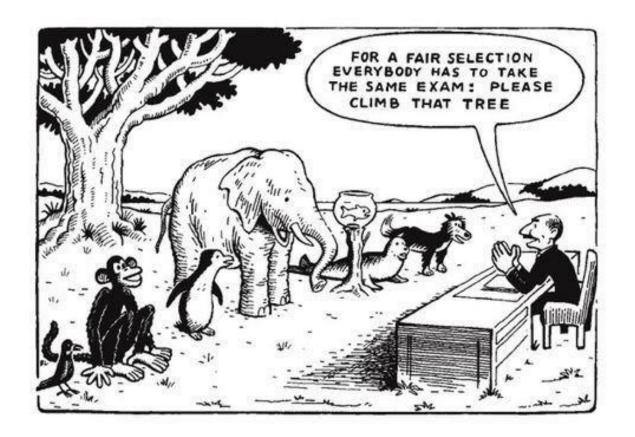
Romidepsin Plus CHOP vs CHOP

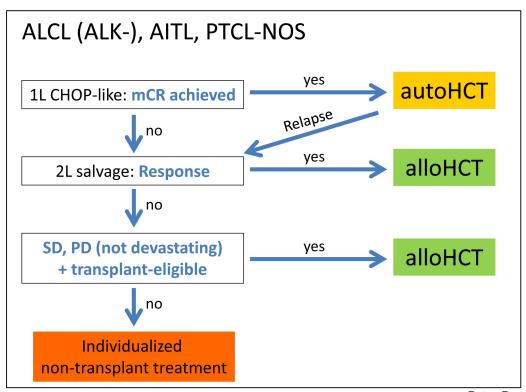
Subgroup analysis showed that prolonged

Secondary end point analysis – DOR was

PFS as seen in the TFH subgroup

CHOP+ Romidepsin (Ro-CHOP) – Initial results ORR 78% including 66% CR. Randomized phase 3 is negative Romidepsin +CHOEP – did not meet primary end point

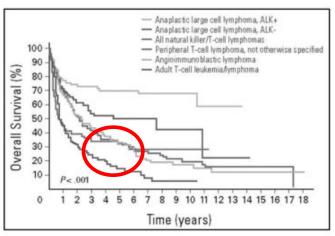

Bachy et al. J Clin Oncol. 2022.


Jasmine Zain

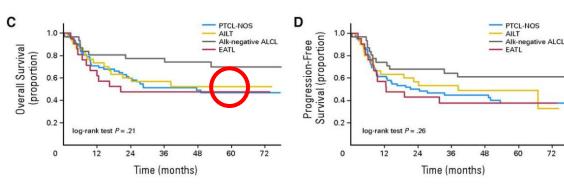
longer in the Ro CHOP arm

One Size Fits All?

Role of Stem Cell Transplant in T-Cell Lymphoma



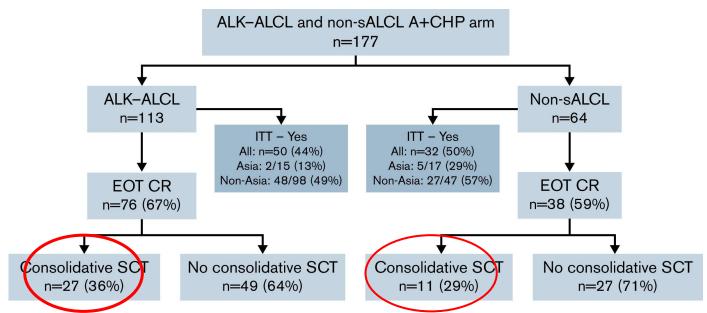
Peter Dreger. Am Soc Hematol Educ Program, 2024.


Effect of Upfront Transplant in Nodal PTCL

International T-cell lymphoma project

Vose et al - 2008

Effect of upfront ASCT

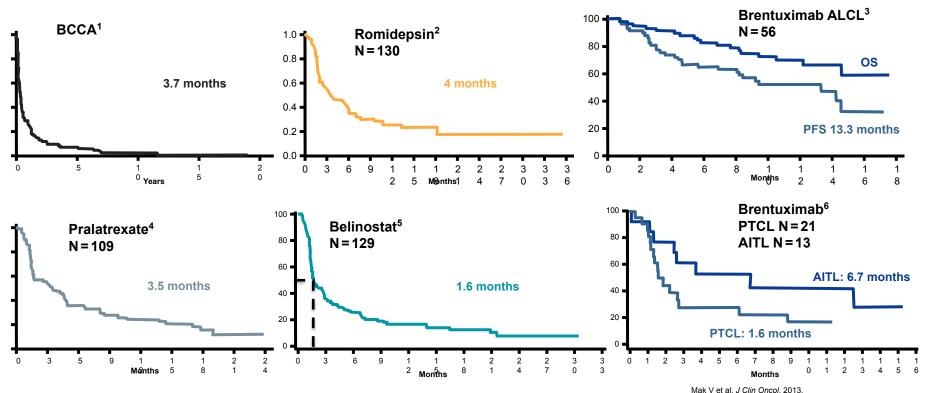

D'Amore et al JCO 2011

	ALCL ALK+	ALCL ALK-	PTCL-NOS	AITL	NK/T
Int T-cell Project	70%	49%	32%	32%	9%
D'Amore et al	Not included	70	47	52	44

Transplant or Not?

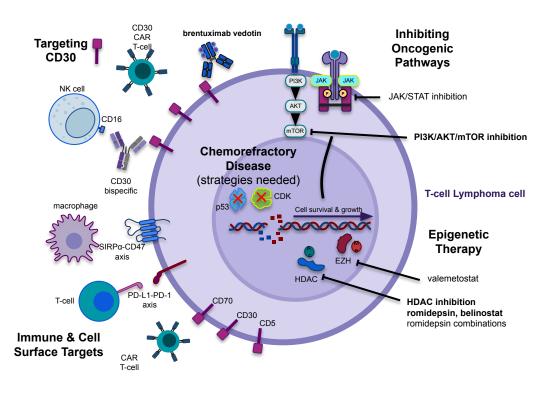
- PubMed search for the words "stem cell transplant" and "T-cell lymphoma" showed up 471 ARTICLES IN THE LAST 10 YEARS
- Both NCCN and CIBMTR recommend to consider autologous stem cell transplant as consolidation for initial treatment of nodal T-cell lymphomas- 2 major prospective trials and Echelon 2
- Remains controversial
- No consensus for conditioning regimen

Subanalysis of ECHELON-2: Only a Third of Patients in CR Received a Transplant



ALCL = anaplastic large cell lymphoma; ALK = anaplastic lymphoma kinase; CR = complete response; EOT = end of treatment; ITT = intention to transplant; sALCL = systemic ALCL; SCT = stem cell transplant

Savage KJ. Blood Adv. 2022.


PFS of Relapsed/Refractory PTCL

Coiffier B et al. J Clin Oncol. 2012. Pro B et al. J Clin Oncol. 2012. O'Connor OA et al. J Clin Oncol. O'Connor OA et al. J Clin Oncol. 2015. Horwitz SM et al. Blood. 2022

Therapeutic Targets in T-Cell Lymphomas

Stuver R. Cancers (Basel). 2023.

#HOPLive

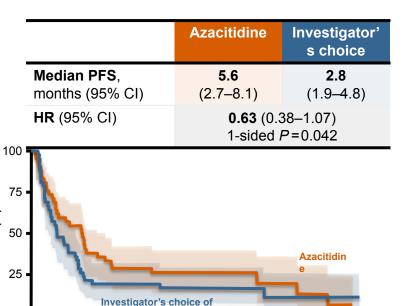
Jasmine Zain

Duvelisib Monotherapy: Response by Subtype

	PTCL-NOS (n = 52)	AITL (n = 30)	ALCL (n = 15)
ORR by baseline histology, n (%)	25/52 (48.1)	20/30 (66.7)	2/15 (13.3)
Best overall response, n (%)			
Complete response, n (%)	14/52 (26.9)	16/30 (53.3)	2/15 (13.3)
Partial response, n (%)	11 (21.2)	4 (13.3)	NC
Median PFS by IRC, mo (95% CI)	3.4 (1.8, 8.1)	9.1 (6.2, NC)	1.5 (0.7, 1.7)
Median OS, mo (95% CI)	10.9 (5.1, NC)	15.5 (9.5, 18.0)	4.8 (1.7, 15.7)
Median time to response (range)	1.7 (1.7, 0.5)	1.8 (1.9, 0.5)	2.6 (2.6, 1.3)
Median DOR by IRC, mo (95% CI)	5.5 (2.0, 9.2)	8.8 (7.7, NC)	1.9 (1.9, 2.0)
Median DOR for pts achieving CR	7.4 (6.4, NC)	7.9 (3.3, NC)	1.9 (1.9, 2.0)

Duvelisib is not FDA approved for PTCL Mehta-Shah N, et al. Hemasphere. 223

#HOPLive 20


Other PI3K Inhibitor Monotherapies Under Investigation

	Linperlisib ¹	Tenalisib ²
Target	PI3Kd	ΡΙ3Κ δ/γ
Trial (Phase)	NCT04108325 (1b)	NCT02567656 (1/1b)
ORR/CR, %	60%/35%	46.7%/20% (PTCL subset)
mDoR	15 months (95%CI, 6.9–NE)	6.5 months (95% CI, 2.9–14.9) (PTCL subset)
mPFS	10 months (95%CI, 3.7– NE)	NR
AEs	 TRAEs: 39 of 43 pts (91%) Most common grade ≥3 were neutropenia (21%), pneumonia (12%), 	 Most frequently reported TEAEs were fatigue (45%), AST increase (36%), ALT increase (35%), and diarrhea (33%)
	and hypertriglyceridemia (7%)	 Most common grade ≥3 TEAEs were transaminase elevations (21%), anemia (8.6%), neutropenia (6.9%), and hyponatremia (6.9%)
		 Grade 4 related TEAEs included two events of ALT increase and one event of sepsis

Qiu et al. Blood 2022, Huen A, et al. Cancers (Basel). 2020

#HOPLive

Phase 3 ORACLE Study: Oral Azacitidine vs Investigator's Choice

18

9 (2)

5 (4)

Months

21

15

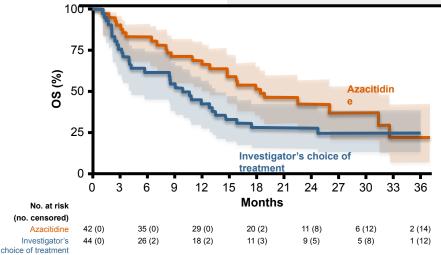
24 27

5 (6)

3 (6)

30

2 (7)


2 (6)

33

0(8)

1 (7)

Dupuis J, et al. Lancet Haematol. 2024;11(6):e406-e414.

PFS (%)

No. at risk

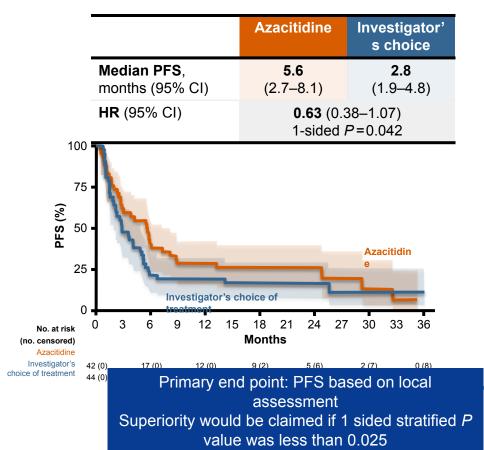
Azacitidine

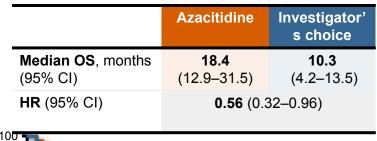
42 (0)

17 (0)

9 (2)

Investigator's

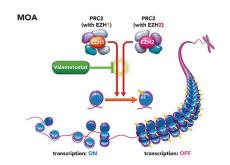

(no. censored)

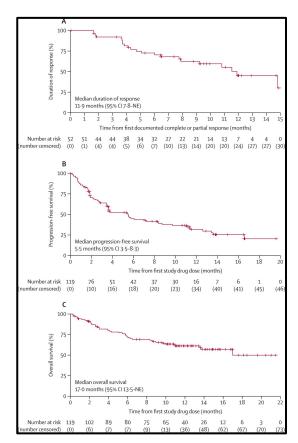

choice of treatment

12 (0)

8 (0)

Phase 3 ORACLE Study: Oral Azacitidine vs Investigator's Choice




5-Azacitidine is not FDA approved for PTCL Dupuis J, et al. *Lancet Haematol*

Targeting the Histone Methylation

- Valemetostat
- Targets EZH1 and EZH2
- Prevents methylation of lysine 27 on H3 (H3K27)

	N=119	AITL n=42	PTCL-T FH n=8	PTCL-n os n=41	ALCLn =9	Other n=19
ORR	52 (43.7%)	54%	50%	31%	33%	47%
CR	14%	18%	12%	10%	11%	16%
SD	17%	24%	13%	20%	11%	5%
DOR	11.9 months	11.9 months		7.9 months	3.8 months	9.2 months

Zinzani et al. Lancet. 2024.

Targeting the Jak/STAT Pathway

Response by Cohort

Cohorts	Total treated, n	Total evaluable for response, n	ORR n (%)	CBR n (%)
Cohort 1 Cohort 2 Cohort 3	21 15 17	21 14 17	7 (33%) 4 (29%) 2 (12%)	10 (48%) 5 (36%) 3 (18%)
Total	53	52	13 (25%)	18 (35%)
P (cohorts 1 & 2 vs 3)			P=0.2	P= 0.073

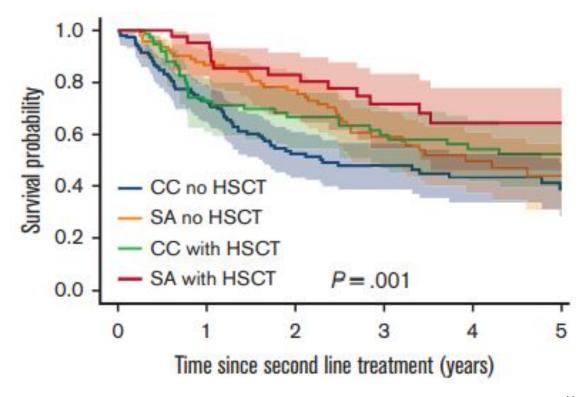
- Adverse events were consistent with the known side effect profile of ruxolitinib and primarily involved cytopenias
- Treatment-related SAEs included herpes simplex virus-1 stomatitis (n = 1), spontaneous bacterial peritonitis (n = 1), febrile neutropenia (n = 3), anemia (n = 1), and herpes zoster (n = 1)

Response by Subtype

Subtype	Evaluable for response, n	ORR n (%)	CBR n (%)
PTCL-NOS	11	2 (18%)	2 (18%)
T-PLL	8	3 (38%)	4 (50%)
AITL/TFH	9	3 (33%)	4 (44%)
T-LGL	5	2 (40%)	4 (80%)
ALCL	4	1 (25%)	1 (25%)
ATLL	3	0	0
CTCL	7	1 (14%)	1 (14%)
G/D TCLs	4	1 (25%)	1 (25%)
SPTCL	1	0	1 (100%)

Ruxolitinib is not FDA approved for PTCL Moskowitz AJ, et al. *Blood*. 2021

Phase 2 JAKPOT08 Study: Golidocitinib for R/R PTCL


	n	= 88
Tumor response	By IRC	By investigator
ORR, n (%)	39 (44.3)	33 (37.5)
Overall response, n (%)		
Complete response	21 (23.9)	11 (12.5)
Partial response	18 (20.5)	22 (25.0)
Stable disease	17 (19.3)	17 (19.3)
Progressive disease	20 (22.7)	27 (30.7)
Not evaluable	12 (13.6)	11 (12.5)

Histology subtypes*	Total number of subjects, n** (%)	ORR*** n (%)	CRR*** n (%)
PTCL-NOS	50 (56.8)	23 (46.0)	14 (28.0)
AITL	16 (18.2)	9 (56.3)	4 (25.0)
ALCL	10 (11.4)	1 (10.0)	0
NKTCL	3 (3.4)	2 (66.7)	1 (33.3)
Others	9 (10.2)	4 (44.4)	2 (22.2)

Song Y et al. Lancet Oncol. 2024;25(1):117-125.

Prognosis for R/R Mature T-Cell and NK Cell Lymphomas: Results From the PETAL Consortium

Han et al. *Blood Adv*. 2025. – PETAL consortium

#HOPLive

How to Make Sense of All These Data for Relapsed/Refractory PTCL

Clinical trial – novel agents in study – CDK9 inhibitors, EZH2 inhibitors

Send for mutation analysis if possible

For TFH subtypes - prefer

- Epigenetic therapies romidepsin alone or in combination– (5 aza, lenalidomide)
- Duvelisib

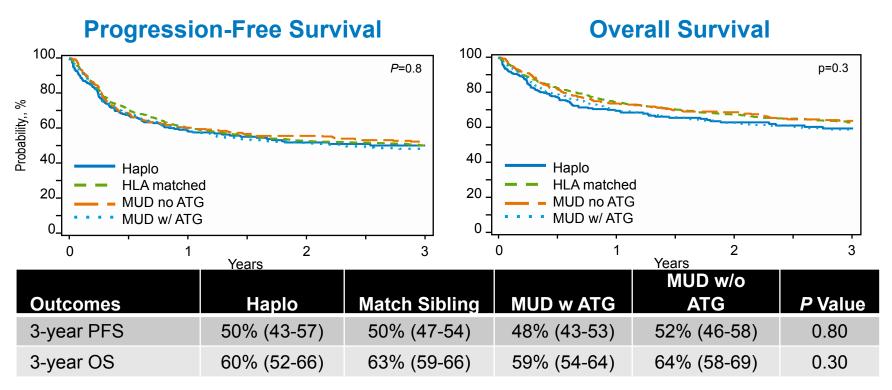
- Alk inhibitors
- O BV- can try again if not previously refractory
- Pralatrexate

ALCL- alk -ve

- BV- can try again if not previously refractory, BV + bendamustine
- Pralatrexate

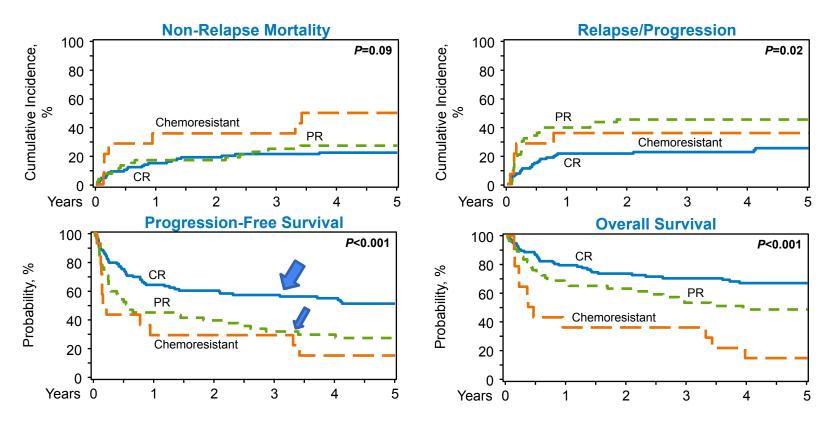
PTCL-nos

- Duvelsib
- Epigenetic therapy



Allogeneic stem cell transplant in eligible patients

If transplant ineligible, consider maintenance strategies



Allogeneic HCT Can Provide Durable Control in Mature T-cell Lymphomas

Hamadani M et al. Blood Adv. 2022;6(3):920-930.

Impact of Remission Status

Furqan F et al. *Br J Haematol*. 2023;200(1):54-63.

#HOPLive

Conclusions

- R/R PTCL lacks a uniform standard-of-care approach^{1,2}
 - Overall survival (OS) in R/R setting without allogeneic hematopoietic stem cell transplantation is less than 1 year
- Studies have usually taken a "one size fits all" approach with wide variations in outcomes for R/R PTCL
- Heterogeneous outcomes result from variations: subtypes, treatment approaches, and access to alloSCT
- Standard treatments for PTCL in the R/R setting include newer non-chemotherapeutic agents, combinations

Jasmine Zain

THANKYOU

PANEL DISCUSSION

Q&A

